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Abstract

Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-through-

put genotyping, and useful for a number of breeding and genetics applications in crops.

SNP frequencies vary depending on the species and populations under study, and therefore

target SNPs need to be carefully selected to be informative for each application. While multi-

ple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they

vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this

study, we report the development and performance of the Cornell-IR LD Rice Array

(C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the

previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms

within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and

O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays,

including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array

(HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array

selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-

specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis

for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and

identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used

for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of

Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quanti-

tative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the
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C7AIR provides valuable information that can be used to select informative and reliable

SNP markers for conversion to lower-cost genotyping platforms for genomic selection and

other downstream applications in breeding.

Introduction

Single nucleotide polymorphisms (SNPs) occur at specific positions in the genome and are the

most common form of genetic variation in eukaryotic organisms. They are the result of ran-

dom mutations that occur every few hundred base pairs in most genomes [1]. While the

majority of SNPs are found in the DNA between genes, they can also occur within genes and

in regulatory regions where they may directly affect gene function and give rise to observable

phenotypic variation.

In rice research communities, high-throughput sequencing and SNP genotyping assays

over the last 20 years have generated large amounts of SNP data that can be used to calculate

the frequency of SNP alleles in different populations, to track the inheritance of those alleles

across generations, and to associate SNP variation with phenotypic variation [2]. This infor-

mation provides the basis for developing high-value genotyping assays that target particular

subsets of SNPs for a variety of downstream applications. Identifying the subsets of SNPs that

are most informative, most reliable, and easiest to call is essential for designing optimal, cost-

effective genotyping approaches for specific applications in genetics and breeding.

SNP assays for rice have been developed at different densities, with examples including the

C6AIR [3], the RICE6K [4], the 44K-SNP chip [5], and the 700K-SNP High Density Rice

Array [6]. Data generated using these SNP arrays are useful for genome wide association analy-

sis, differentiating subpopulation groups, DNA fingerprinting, and genetic diversity analysis.

Lower-density SNP arrays have also been widely used in rice genetics and breeding, including

several 384-SNP bead sets used for QTL mapping, trait integration and confirmation of culti-

var identity [7]. At this time, SNP arrays that provide genome-wide coverage and include

markers that are informative both within and between the major subpopulations of rice are in

high demand because they offer fast sample turn-around-time, and reliable, consistent, and

easy to interpret data that can be readily databased. The SNP density required to meet these

criteria in rice is ~6–7,000 markers, due to the significant differences in SNP distribution and

frequency that characterize the deeply differentiated subpopulations of O. sativa [3].

The Cornell-IR LD Rice Array (C7AIR) improves upon the C6AIR [3] by removing poorly

performing SNPs, maintaining the ability to differentiate between the five major subpopula-

tions of O. sativa, and incorporating new SNPs that are informative for specific subgroups,

particularly the US tropical japonica breeding community. The C7AIR targets a sweet spot

between cost and informativeness for the global rice community. In contrast to de novo
sequencing technologies that require a high level of computational and bioinformatics exper-

tise, the C7AIR offers a high throughput genotyping assay with straightforward data analysis,

and provides opportunities for immediate application in genebank management, genetic anal-

ysis, and applied plant breeding. Moreover, the C7AIR rice genotype data provides a valuable

source from which to select validated SNP markers informative for specific germplasm groups

for conversion to lower-cost assay systems for high-sample throughput applications.
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Materials and methods

Plant materials

A total of 544 Oryza accessions were used for the genotyping analysis with the C7AIR (S1

Table). The 378 samples contributed by Texas A&M were obtained from the USDA-ARS

National Small Grains Collection (Aberdeen, Idaho), the Genetic Stocks-Oryza (GSOR) collec-

tion located at the USDA-ARS Dale Bumpers National Rice Research Center (USDA-ARS

DBNRRC; Stuttgart, AR), as well as inbred rice breeding materials contributed by the Texas

A&M AgriLife Research Center in Beaumont, Texas. The accessions partially overlapped the

USDA Rice Mini-Core and Core Subsets [8, 9].This material had representative samples from

all 5 subgroups of O. sativa and O. glaberrima samples. IRRI’s material contained 23 F1 sam-

ples and 48 inbred accessions, and 95 inbred accessions were contributed by the McCouch Lab

at Cornell University. Leaf tissue was collected approximately 30–55 days after planting. Sam-

ples genotyped at IRRI were processed in the Genotyping Services Lab at IRRI, while samples

from other groups were lyophilized and sent to Eurofins Diagnostics, Inc. (www.

eurofinsgenomics.eu/en/genotyping-gene-expression/service-platforms/illumina-array-

platforms/) for DNA extraction and genotyping.

Design of the C7AIR

The C7AIR is a beadpool manufactured in liquid phase and stabilized on chips that are com-

mercially available as Illumina Infinium arrays. It was developed by the “International RiceLD

Consortium”, a group of investigators from Cornell University, the International Rice

Research Institute (IRRI), Texas A&M University, Louisiana State University (LSU), The Dale

Bumpers National Rice Research Center (DBNRRC) in Arkansas, the University of Arkansas,

and the University of York in the UK.

The Cornell_7K_Array_Infinium_Rice (C7AIR) design represents an improved version of

the Cornell_6K_Array_Infinium_Rice (C6AIR) [3]. SNPs that performed poorly on the

C6AIR were eliminated, and new SNPs were added specifically to increase the information-

content for elite tropical japonica breeding material. The selection of SNPs for the C7AIR was

based on the following metrics using diversity information from prior work in the McCouch

lab: no variants within 10 bp of a target SNP locus; no SNPs within 35 bp of a target SNP locus

having a minor homozygote count> 4; no INDELS or repetitive sequences in the target

region. The C7AIR included 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density

Rice Array (HDRA) [6], 910 SNPs from the 384-SNP GoldenGate sets [7], 189 SNPs from the

44K array [5] selected to have high information content in U.S. tropical japonica rice varieties,

and 8 SNPs in genes of interest (S2 Table). Although 7,182 SNPs were submitted to Illumina,

this number decreased to 7,098 as some SNPs did not meet their initial quality metrics. Eight

gene based SNPs associated with four genes were included in the design of the array: three

SNPs for gelatinization temperature in the starch synthase IIa or alk gene [10, 11], three for

apparent amylose content associated with various alleles for the Wx gene [12, 13], one for

grain length in Gs3 [14], and one for blast resistance in Pi-ta [15].

Genotyping and SNP allele calling

Genotyping was performed following the manufacturer’s protocol for amplification of DNA,

hybridizing to the Infinium II BeadChips, staining with fluorescent dye and scanning to mea-

sure the fluorescence intensity of the beadchip. Raw intensity values were sent to each collabo-

rating rice lab and converted to SNP data using Illumina’s GenomeStudio software. The 551

varieties genotyped were then filtered down to 448 based on a call rate above 0.939 (less than

PLOS ONE A rice 7K SNP array for breeding and genetics

PLOS ONE | https://doi.org/10.1371/journal.pone.0232479 May 14, 2020 3 / 14

http://www.eurofinsgenomics.eu/en/genotyping-gene-expression/service-platforms/illumina-array-platforms/
http://www.eurofinsgenomics.eu/en/genotyping-gene-expression/service-platforms/illumina-array-platforms/
http://www.eurofinsgenomics.eu/en/genotyping-gene-expression/service-platforms/illumina-array-platforms/
https://doi.org/10.1371/journal.pone.0232479


6.1% missing data per sample) and a P10 GC score above 0.45. P10 GC is a score developed by

Illumina to identify samples which may have failed genotyping as described in the user manual

for GenomeStudio. Upon compiling all data in GenomeStudio, SNPs were manually re-clus-

tered in order to correctly sort the clusters as the correct genotype.

A cluster file for the C7AIR was created using 544 samples (23 F1 samples from IRRI, 48

inbred accessions from IRRI, 95 inbred accessions from Cornell, and 378 inbred accessions

from Texas A&M) (S1 Table). These samples were filtered using a p10GC of 0.45 and call rate

of 0.939. This removed a total of 63 samples, 50 O. glaberrima, 12 O. sativa, and 1 O. meridio-
nalis. After filtering, the sample clusters were shifted to match three potential clusters (two

homozygous and a heterozygous class) or two clusters, when heterozygotes were missing.

SNPs were then classified as very high (100% call rate), high (> 400 samples called), poor

(<400 samples called), and fail quality (S3 Table). Failed SNPs had less than 10% of samples

called, had more than 4 clusters, were completely skewed to one side, or only had one cluster.

The genotypic information for each sample consisting of the matrix of 7,098 SNPs across 544

Oryza accessions is available in S4 Table.

Tree construction and data analysis

Reclustered data was exported from GenomeStudio and imported into TASSEL GUI 5.2.43

where CenteredIBS kinship using a maximum of 6 alleles was calculated [16]. Kinship values

were then imported into MEGA7 to create a phylogenetic tree [17]. TASSEL was also used to

calculate linkage disequilibrium using a sliding window of 2000 SNPs [16]. Genotyping infor-

mation was imported to GAPIT where marker density, VanRaeden kinship, and other linkage

disequilibrium statistics were determined [18].

A custom R script was used to estimate the number of polymorphic markers between pair-

wise combinations of lines genotyped with the C7AIR. Genome-wide SNP data from pairs of

samples were compared for each individual locus and heterozygosity was calculated. Popula-

tion subgroups were determined based on the fastStructure output included in S1 Table and

filtered to ensure the corresponding principal component was larger than 0.8 for each

individual.

Genome Wide Association Study (GWAS)

A total of 189 varieties of O. sativa were grown in Beaumont, TX during summer 2017. These

varieties were grown using standard agronomic practices in two replications of three-row

plots. Five plants of each accession were randomly chosen from the middle row of each plot

avoiding the border plants. The height (cm) of each selected rice plant was measured from the

base to the neck of the panicle. The heritability of the trait was calculated as: H2 = σ 2g / (σ 2g +

σ 2e/r). Homogeneity of variance across the two replications was estimated using Levene’s test

[19]. These accessions were genotyped as a subset of the 384 varieties genotyped by Texas

A&M.

The GWAS analysis was performed using Mixed Linear Model (MLM) of GAPIT [18].

Both kinship (K) matrix and population structure matrix (Q) were used in the MLM model to

account for the relatedness among the genotypes and to reduce false positives. The kinship (K)

matrix represented the variance-covariance matrix between the individuals complemented

with population structure (Q matrix). The structure data was obtained from the FastSTRUC-

TURE software [20] and the kinship relationship matrix (K) was obtained from the TASSEL

4.0 software [16].

A significant QTL was defined as a single or a cluster of SNP markers that passed the signif-

icance threshold of p<0.001. In general, the extent of LD in rice on average ranges from 100
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to 500 kb [21–23]. Based on this assumption, we defined two or more SNPs located within 250

kb as a single QTL. Likewise, gene(s) that are located within 250 kb were considred potentially

colocalized with the QTL. Candidate genes were identified using the Q-TARO (QTL Annota-

tion Rice Online) database [24].

Results and discussion

Design of the C7AIR

The Cornell-IR LD Rice Array (C7AIR) design represents an improved version of the Cor-

nell_6K_Array_Infinium_Rice (C6AIR) [3], and contains a total of 7,098 SNPs. The design of

the C7AIR incorporates 4,007 high-quality SNPs from the C6AIR, 2,056 SNPs from the High

Density Rice Array (HDRA) [6], 910 SNPs from the 384-SNP GoldenGate sets [7], 189 SNPs

from the 44K array [5] selected to have high information content across U.S. tropical japonica
rice varieties, and 8 SNPs in genes of interest (S2 Table). A summary file containing informa-

tion about each SNP’s locus_ID, position on the Nipponbare reference genome (IRGSPv1.0),

strand, probe sequence (n = 50 bp), flanking sequence (n = 60 bp on either side of the SNP),

and source is available as S3 Table. The average SNP density is one SNP per 52 kb, and>50%

of SNPs are less than 50 kb away from each other (Fig 1). Subsequent analyses were performed

on C7AIR genotype data obtained on a diverse set of 551 rice samples.

Filtering and manual re-clustering of SNPs

To obtain a sub-set of SNPs with optimal performance for genetic analysis in Asian cultivated

rice (O. sativa), we masked accessions with low call rates and low quality values, as measured

by p10 GC, an Illumina quality parameter (Fig 2). A total of 63 accessions were masked, con-

sisting of 50 O. glaberrima, 12 O. sativa, and one O. meridionalis (wild accession). Low call

rates on SNP arrays are typically due to sequence variation in the regions flanking the target

SNPs. It is noteworthy that all O. rufipogon and O. nivara samples in this study had high call

rates (> 0.94), similar to O. sativa, and 0.45 p10 GC, while O. glaberrima accessions had lower

call rates (~0.88), consistent with the greater evolutionary distance between O. sativa and O.

glaberrima as reflected in the kinship matrix (S5 Table).

After masking poor-performing DNA samples, the SNPs were filtered based on quality

parameters. Most of the SNPs (n = 6514) passed initial quality control, but the number of het-

erozygous calls for each locus was very low due to the highly homozygous nature of rice as an

inbred crop. This is challenging when developing an automated cluster file with the Illumina

GenomeStudio software because the algorithm often cannot correctly identify three clusters

when there are few heterozgyotes. Therefore, GenomeStudio clusters were manually corrected

and saved as a new cluster file, as described below in the Methods section. SNPs filtered out

using this process may still be beneficial, especially for diversity analysis within wild species.

Diversity analysis

The C7AIR successfully differentiated the 5 major subgroups of O. sativa using Centered IBS

(Fig 3) and VanRaeden kinship measurements (Fig 4). The Southern U.S. varieties appropri-

ately clustered with the tropical japonica subpopulation, as expected based on their breeding

history. When pairwise comparisons were performed between O.sativa and O. glaberrima, O.

sativa was found to have the highest nucleotide diversity. The C7AIR was best able to differen-

tiate individuals within the indica subgroup with informativeness decreasing with tropical
japonica, aus, temperate japonica and least informative for aromatic. This SNP array readily
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differentiates temperate japonica from indica, while the fewer polymorphisms were observed

between indica and aus (S6 Table).

Genome wide association study

Genome wide association studies (GWAS) take advantage of historical LD in a collection of

diverse lines in an effort to correlate regions of the genome with specific phenotypes [21]. The

Fig 1. Distribution of gap size between a SNP and its neighbors. The majority of SNPs are within 100 kb of their neighbor, as seen by the histogram of SNP markers on

the y-axis and density in basepairs on the x-axis.

https://doi.org/10.1371/journal.pone.0232479.g001

Fig 2. p10 GC versus call rate for all samples. The Illumina p10GC quality metric is shown on the y-axis and the SNP

call rate on the x-axis; most samples had p10 GC values>0.45 and call rates> 0.94.

https://doi.org/10.1371/journal.pone.0232479.g002
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Fig 3. Phylogenetic tree from 6,514 SNPs across 551 Oryza sativa accessions. The five subgroups of O. sativa are shown:

indica: dark purple, aus: light purple, aromatic: green, temperate japonica: turquoise, tropical japonica: blue, admixed:

black.

https://doi.org/10.1371/journal.pone.0232479.g003
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average extent of LD in O. sativa ranges from approximately 100 kb in aus and indica, to 500

kb in tropical japonica and temperate japonica [23, 25]. USDA scientists have created core and

mini-core collections of rice germplasm for use in association mapping studies [8, 9]. To test

the utility of the C7AIR for GWAS, the array was used to genotype a set of 189 lines, represent-

ing a subset of the USDA core and mini core collections along with additional accessions from

the the USDA National Small Grains Collection (NSGC), and the lines were also phenotyped

for plant height.

Fig 4. VanRaeden kinship heat map. The relatedness of individuals compared to each other is shown, with the legend identifying subgroups of O.

sativa.

https://doi.org/10.1371/journal.pone.0232479.g004
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The plant height data showed a wide distribution ranging from 32.9 to 150.35 cm with a

population mean of 103.82 cm and standard deviation of 28.78 cm. The heritability was esti-

mated to be 97.4; which showed that the trait was mostly genetically controlled. This was also

further confirmed by the the Levene’s test result which shows that the variances across replica-

tions were insignificant (p-value = 0.1375); consequently the plant height data were averaged

across replications and used as representative phenotypic data for the GWAS study. A total of

six subpopulations were obtained from FastStructure. This population structure and the kin-

ship matrix obtained were used in the plant height GWAS.

A total of 20 QTLs were detected using the p-value of 0.001 significant threshold; among

them 14 were detected with a FDR < 0.1 and 4 were detected with FDR<0.05 (Table 1; Fig 5).

The QTL were defined based on a single significant SNP or a cluster of significant SNPs within

250 kb, with the exception of the QTL on chromosome 10, qPHT-10-1. This QTL was identi-

fied by a clustered of 5 SNPs having distances of less than 250 kb between each other, within a

total region of 485.32 kb. Out of 20 QTLs, 8 of them were found in the vicinity of genes previ-

ously reported to be associated with plant height or dwarfism; while the rest of the QTLs are

potentially novel, including the QTL on chromosome 12 (qPHT-12-3) that has the most signif-

icant SNP in our study. Six of these genes were located less than 250 kb to the nearest signifi-

cant SNPs, while the gene pla1 was 269.8 kb and the gene OsGH3.1 was located 300.5 kb from

its nearest significant SNP. Interstingly, two of the genes were detected within distances less

than 15 kb to the nearest SNP peaks (as described below).

A QTL was detected on chromosome 1 at position 35.367 Mb (qPHT-1) which is in the

vicinity of OsGH3.1 (35.067Mb). Overexpression of the OsGH3.1 gene in rice causes dwarfism

and decreased free auxin content and cell elongation [26]. A QTL on chromosome 5 at posi-

tion 20.056 Mb, qPHT-5-2, potentially colocalized with gid1 (19.878 Mb), which encodes for

an unknown protein similar to lipases and may act as a receptor mediating GA signaling in

rice which leads to dwarfism [27]. Another QTL on chromosome 6 at position 2.553 Mb,

qPHT-6-1, was located nearby the d3 gene, which causes tillering dwarf mutants and an

increase in tiller number [28]. There were three QTLs detected on chromosome 7, and all of

them potentially colocalized with known genes. The first QTL at position 24.304 Mb, qPHT-7-
1, was detected only 10.2 kb away from oswrky78 (24.320 Mb)—a gene that may regulate stem

elongation and seed development [29]. This QTL was also detected at 158.7 kb away from

OsBZR1 (24.145 Mb), and supression of this gene leads to dwarfism and alters brassinosteroids

(BR) responses in rice [30]. The two closely linked-genes within the region of the QTL may

potentially contribute individually or together to the QTL phenotype. The second QTL at sig-

nificant SNP peaks positioned at 24.749 Mb and 24.759 Mb, qPHT-7-2, was in the vicinity of

bui1 (FH5/BENT UPPERMOST INTERNODE1; 24.934 Mb). This gene encodes a formin-type

actin nucleation factor and affects cell expansion and plant morphogenesis in rice, including

bent uppermost internode, dwarfism, wavy panicle rachis, and increased gravitropic response

[31]. The third QTL at position 27.797 Mb, qPHT-3-1, was only 60.6 kb away from OsBLE2
(27.858 Mb). This gene may be involved in brassinolide (BL)-regulated growth and develop-

ment processes in rice. Transgenic rice expressiong antisense of this gene demonstrates

repressed growth [32]. Another QTL on chromosome 10 at position 13.335 Mb, qPHT10-2,

was detected only 13.1 kb away from the EBL1 gene (13.348 Mb), and silencing of this gene

leads to plants with reduced plant height [33]. Lastly, another QTL on chrosome 10 at position

14.288 Mb, qPHT-10-3, was in the proximity of the plastochron (PLA)1 gene (14.018 Mb).

PLA1 was isolated by map-based cloning and encodes a cytochrome P450, CYP78A11, which

potentially catalyzes substances controlling plant development, including leaf primordia,

bracts of the panicle, and elongating internodes [34]. Although the causal relationships of

these genes with the significant SNP markers will need further investigation to confirm, these
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Table 1. QTLs for plant height detected by GWAS and potentially colocalized genes.

QTL

ID

Chr. Position p-value FDR R2 Gene Start End Function Reference

qPHT-
1

1 35367274 0.00012 0.0534148 5.16 OsGH3.1 (Os01g0785400) 35064294 35066779 Auxin content, cell elongation,

resistance to Magnaporthe grisea
infection

Dominggo et al.

2009

qPHT-
2

2 7487524 5.22E-

05

0.0502478 5.73

2 7699096 0.00072 0.1674799 3.95

qPHT-
3

3 16688962 9.92E-

05

0.0520817 5.28

qPHT-
4

4 3411480 0.00092 0.1899119 3.79

4 3419276 0.00091 0.1899119 3.79

qPHT-
5-1

5 16354910 0.00073 0.1674799 3.94

qPHT-
5-2

5 20055547 0.00034 0.1051188 4.46 gid1 (Os05g0407500) 19875298 19878096 Dwarfism, Gibberellin sensitivity Ueguchi-

Tanaka et al.

2005

qPHT-
6-1

6 2553144 5.01E-

05

0.0502478 5.76 d3 (Os06g0154200) 2779789 2784227 Tillering dwarf, tiller bud

outgrowth

Ishikawa et al.

2005

qPHT-
6-2

6 29397359 2.00E-

06

0.00578 8.05

qPHT-
7-1

7 24304110 0.00013 0.0534303 5.10 OsBZR1 (Os07g0580500);

oswrky78 (Os07g0583700)

24144128;

24314295

24145465;

24319767

Dwarfism, leaf angle,

Brassinosteroid sensitivity;

Dwarfism, grain size, cell

elongation

Bai et al. 2007;

Zhang et al.

2011

qPHT-
7-2

7 24749346 0.00032 0.1051188 4.48 bui1 (Os07g0596300) 24926636 24933527 Cell division and expansion,

actin organization

Yang et al. 2011

7 24759254 0.00061 0.1535709 4.06

qPHT-
7-3

7 27797259 2.70E-

05

0.0390099 6.19 OsBLE2 (Os07g0650600) 27857872 27861552 Dwarfism, leaf angle,

Brassinosteroid sensitivity

Yang et al. 2003

qPHT-
9

9 13656075 0.00097 0.1922282 3.75

qPHT-
10-1

10 11173303 3.97E-

06

0.007642 7.55

10 11251070 0.00035 0.1051188 4.44

10 11372537 9.56E-

05

0.0520817 5.31

10 11600834 9.56E-

05

0.0520817 5.31

10 11658623 0.00057 0.1535709 4.11

qPHT-
10-2

10 13335008 0.00054 0.1535709 4.14 EBL1 (Os10g0390800) 13348115 13349483 Internode elongation Iwamoto and

Takano 2010

qPHT-
10-3

10 14287709 0.00015 0.0570201 4.99 pla1 (Os10g0403000) 14016190 14017943 Plastochron and phyllotaxy,

dwarfism

Miyoshi et al.

2004

qPHT-
11-1

11 9607864 0.00081 0.1787786 3.87

11 10116476 0.00061 0.1535709 4.06

qPHT-
11-2

11 27998933 0.00016 0.0570201 4.97

qPHT-
12-1

12 17958383 6.98E-

05

0.0504057 5.53

12 18353718 6.98E-

05

0.0504057 5.53

qPHT-
12-2

12 20843326 0.00012 0.0534148 5.15

qPHT-
12-3

12 24043382 1.08E-

06

0.00578 8.49

https://doi.org/10.1371/journal.pone.0232479.t001
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findings indicate that the C7AIR is useful for GWAS, and that it can identify key regions of

interest for futher study. While the relatively low density of this array may decrease resolution

for locating causal genes underlying the GWAS-QTLs, the high extent of LD in rice popula-

tions (100-500kb) is often the more limiting factor.

Implementation of the C7AIR

The C7AIR is available from Illumina for rice genetics research and breeding applications

around the world. Since its release it has been used to develop inter-specific chromosome seg-

ment substitution lines (CSSLs) involving crosses between O. sativa and its wild relatives, fin-

gerprint diverse accessions from genebanks, and for QTL and association mapping. Although

cost comparisons can be difficult to make between genotyping platforms due to differences in

SNP call rates, informativeness, and varying prices depending on sample commitments, the

C7AIR gives the global research community a uniform tool to easily compare across research

programs while being of high enough density to meet the requirements for a variety of

research applications. It has also served as a resource to identify informative SNPs that can be

deployed in low-cost, low-density genotyping assays such as KASP assays widely used for

marker-assisted selection in forward breeding, or the 1K-Rice Custom Amplicon (1k-RiCA)

SNP assay (https://gsl.irri.org/services/genotyping/rica) used for genomic selection [35].

Conclusions

The C7AIR was designed at Cornell University and established as an Illumina consortium

array by public sector researchers and breeders to meet their collective needs for an array that

would provide reliable, rapid and efficient genotyping data for rice. The C7AIR has since been

used to successfully genotype >10,000 samples of rice across the consortium partners. The

C7AIR is designed to be informative for detecting genome-wide polymorphism among indi-

viduals within the indica, aus, and tropical japonica subpopulations of O. sativa, between pair-

wise combinations of indica, aus, tropical japonica, temperate japonica, or aromatic (Group V)

subpopulations, and between O. sativa and O. rufipogon. The array is less informative for

detecting polymorphism within temperate japonica or the aromatic (Group V) subpopulation,

and was not designed to target SNPs specific to O. glaberrima (S6 Table). While all fixed arrays

have inherent bias due to the design priorities used to select SNPs, the C7AIR provides a useful

Fig 5. GWAS results for plant height using SNPs from the C7AIR. The manhattan plot shows the level of significance for SNPs correlated with

plant height from the GWAS analysis (numbers across the x-axis indicate the chromosome). The Q-Q plot is shown at right. The blue line indicates

the p<0.001 threshold and the green line indicates the Bonferroni correction threshold.

https://doi.org/10.1371/journal.pone.0232479.g005
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genotyping tool for many research and breeding applications in O. sativa, and is widely used

by the global rice community for genetic mapping, DNA fingerprinting, development of

genetic stocks, marker assisted selection and genomic selection. It is also an excellent source of

critical information about SNP reliability and variation in rice that can be used to select SNPs

for conversion to new genotyping platforms.
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S1 Table. Sample names and inferred ancestry/subpopulation assignments from fastStruc-

ture analysis for 544 Oryza accessions run with the C7AIR.

(XLSX)

S2 Table. SNP IDs, target genes, and target traits for 8 trait-specific SNP markers included

in the C7AIR.

(XLSX)

S3 Table. The SNP manifest file, with SNP ID, quality, chromosomal positions, probe and

flanking sequence information for 7,098 SNP loci on the C7AIR.

(XLSX)

S4 Table. SNP genotype data matrix for 7,098 SNPs across 544 Oryza accessions, along

with plant height data for a subset of accessions.

(XLSX)

S5 Table. Kinship values between the accessions generated using the highest performing

SNPs.

(XLSX)

S6 Table. The average and maximum number of polymorphisms between and within

Oryza species and between and within subgroups of O. sativa.

(XLSX)
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